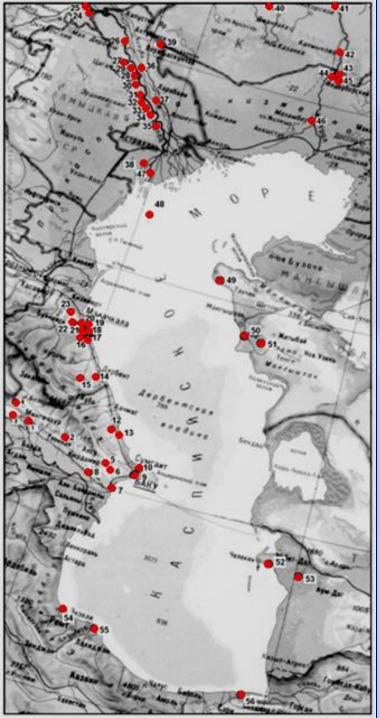

Environment evolution of the Caspian Sea under the global climate change

Эволюция природной среды Каспия в условиях глобальных изменений климата

T. Yanina Moscow State University, Moscow, Russia **H. Khoshravan** Caspian Sea National Research and Study Center, Tehran, Iran

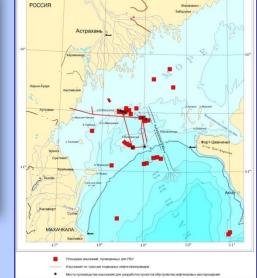
The last climatic macrocycle

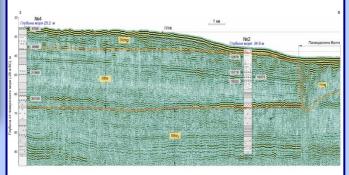

The beginning of the last climatic macrocycle (Late Pleistocene) was marked by the Eemian interglacial, and most specialists think it correlates with the **MIS 5e** substage. Its duration has been estimated at 15 thousand years (130-115 ka BP), and its thermal maximum is positioned at approximately 126 ka BP (Shackleton, 1969; Turney and Jones, 2010). The interval of MIS 5d-5a to MIS 4 corresponds to the Early Valdai glaciation, MIS 3 is correlated with the Middle Valdai mega-interstadial, and MIS 2 is correlated with the Late Valdai in the Russian chronostratigraphy.

We assess the interval MIS 5d-5a as a transitional interglacial-glacial period.

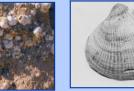
Время, тыс. лет

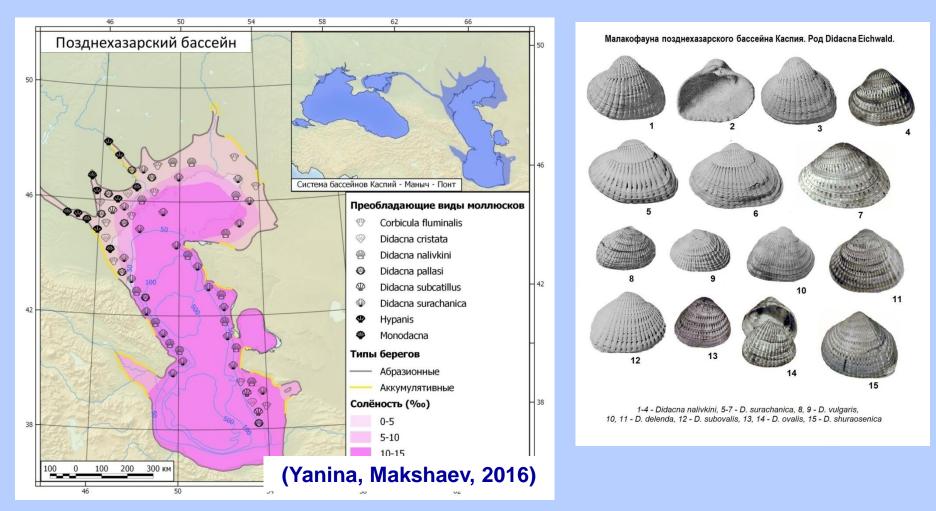
Researchers of the Caspian Pleistocene


Abramova T.A., Aleskerov B.D., Alieva E., Ali Zadeh A.A., Alizadeh K.A., Andrusov N.I., Arslanov Kh.A., Artamonov V.I., Bobrova O.A., Asadullayev E.M., Badyukova E.N., Bogachyov V.V., Bolikhovskaya N.S., Vasilyev Yu.M., Vassoyevich N.B., Weber V.V., Vekilov B.G., Geyvandova E.Kh., Gerasimov I.P., Glazunova K.N., Golubyatnikov V.D., Golubyatnikov D.V., Gorecki G.I., Grimm O.A., Grichuk V.P., Huseynov D., Dashevskaya O.V., Dorofeyev P.I., Zhidovinov N.Ya., Zhizhchenko B.P., Zhukov M.M., Ignatov E.I., Kasimov N.S., Kalitsky K.P., Kaplin P.A., Karandeeva M.V., Kvasov D.D., Kislov A.V., Kovalevski S.A., Kovda V.A., Kolesnikov V.P., Kroonenberg S.B., Kuprin P.N., Lebedev L.I., Lebedeva N.A., Lemeshko N., Leontyev O.K., Leroy S., Lisitsyn K.I., Logvinenko B.M., Lukyanova S.A., Lychagin M.Yu., Mayev E.G., Mamedov A.V., Menabde I.V., Moskvitin A.I., Myakokin V.S., Nalivkin D.V., Nevesskaya L.A. Nikifirov L.G., Nikolaev V.A., Nikolaev N.I., Nikolaev S.D., Ostroumov A.A., Pallas P.S., Popov G.I., Pravoslavlev P.A., Richards K., Rychagov G.I., Svitoch A.A., Sedaykin V.M., Sorokin V.M., Starobogatov Ya.N., Suprunova N.I., Tagieva E., Tudrun, Fedkovich Z.N., Fedorov P.V., Hain V.E., Shkatova V.K., Chepalyga A.L., Veliev S., Eberzin A.G., Eihwald E., Wesselingh F.P., Yanko V.V., Yakhimovich V.L. and many others



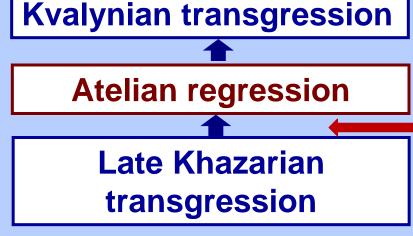

Materials and methods
Complex analysisMain sectionsCores (~100 m)





Late Khazarian transgression

Th/U 122-87 ky TL 127-89 ky ESR 108-85 ky The species composition of mollusc assemblages testify that salinity of the Late Khazarian sea was higher than the modern one, and sediment accumulation environment was warm. Microfaunal assemblages provide evidence for similar environmental conditions.


Hyrcanian transgression

Based on drill sites materials from the northwestern part of the Caspian region, G.I. Popov (1967) reconstructed a brackish water basin. He defined it as an independent Hyrcanian transgression of the Caspian, which took place after the Late Khazarian transgression and was separated from the Khvalynian transgression by the Atelian regression. The basin was inhabited by "Khvalynian-like" fauna. Characteristic features of it are the prevalence Didacna cristata, D. subcatillus, D. hyrcana, and the presence of freshwater specie Corbicula fluminalis.

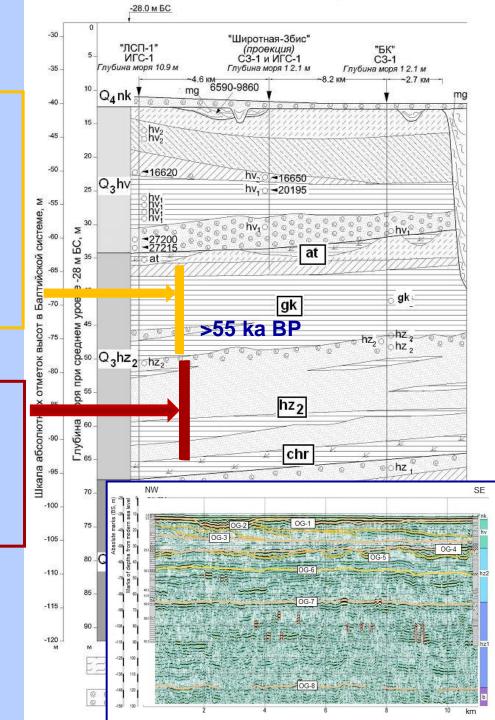
Most part of researchers strongly objected to this concept.

Hyrcanian transgression

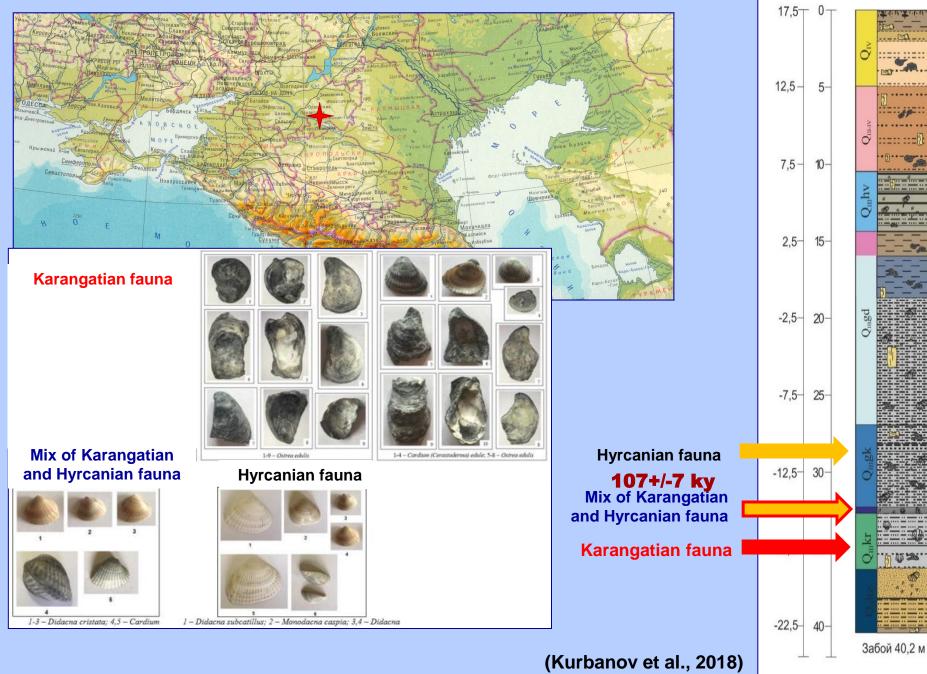
Hyrcanian transgression

Didacna umbonata, D. subcatillus, D. cristata and D. parallella.

The faunal composition is typical fo the Hyrcanian horizon recognized in the North Caspian region by Popov.

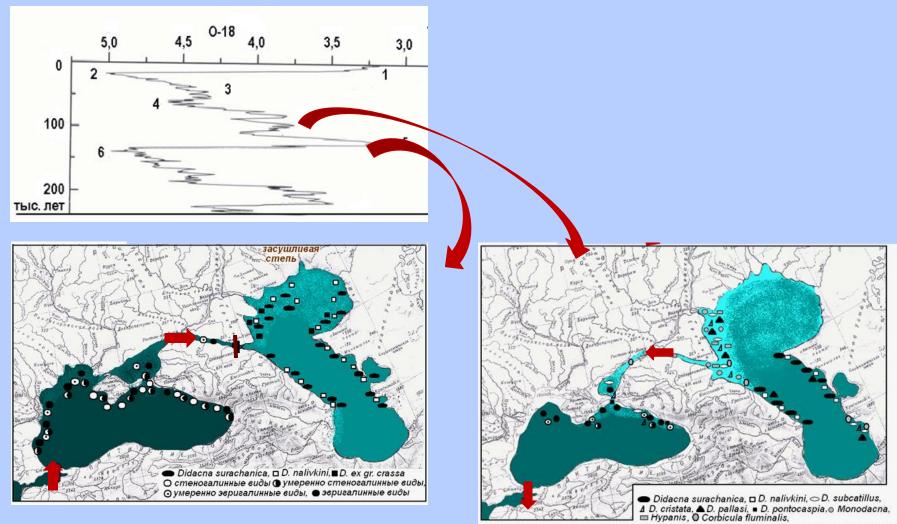

Pollen assemblages differ from the Late Khazarian ones: *Pinus* sp. (11%), *Betula* (9%), *Alnus* (1%), *Corylus* (2%), *Chenopodiaceae* (39%), *Gramineae* (5%), *Artemisia* (3%).

Some cooler and wetter climate.


Didacna surachanica, D. nalivkini (Late Khazarian fauna) +*Corbicula fluminalis*.

The pollen assemblage suggests a wide distribution of semidesert plant communities in the region and practically complete absence of forested areas

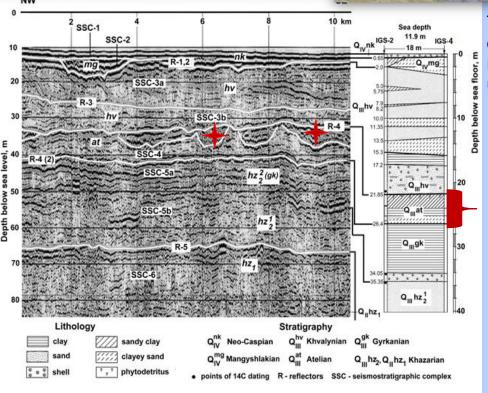
We confirmed existence of the Hyrcanian basin in the history of the Caspian Sea



Manych

hабс, м Глубина, м Скв. PR

Ф умеренно стеногалинные виды, Э умеренно эвригалинные виды, эвригалинные виды

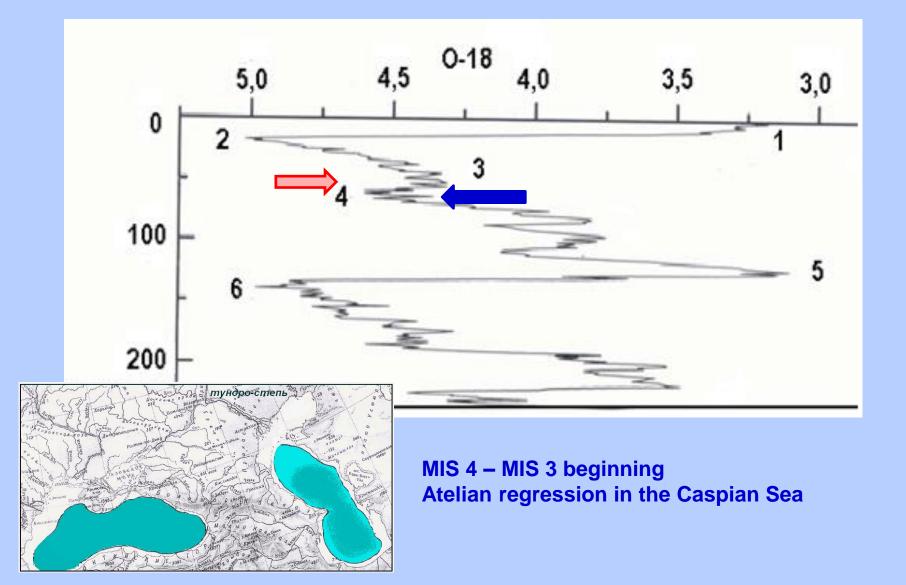

In the history of the Caspian Sea, this period (MIS 5) was followed by the Late Khazarian-Hyrcanian transgressive-regressive stage

Atelian regression

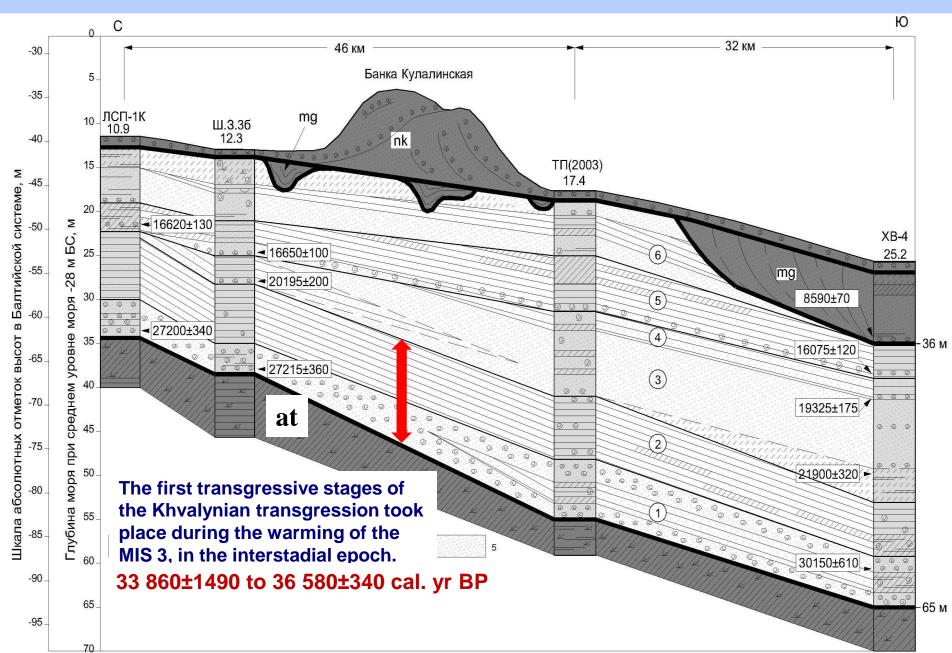
At the base of the series there are well pronounced cryoturbations and ice wedge.

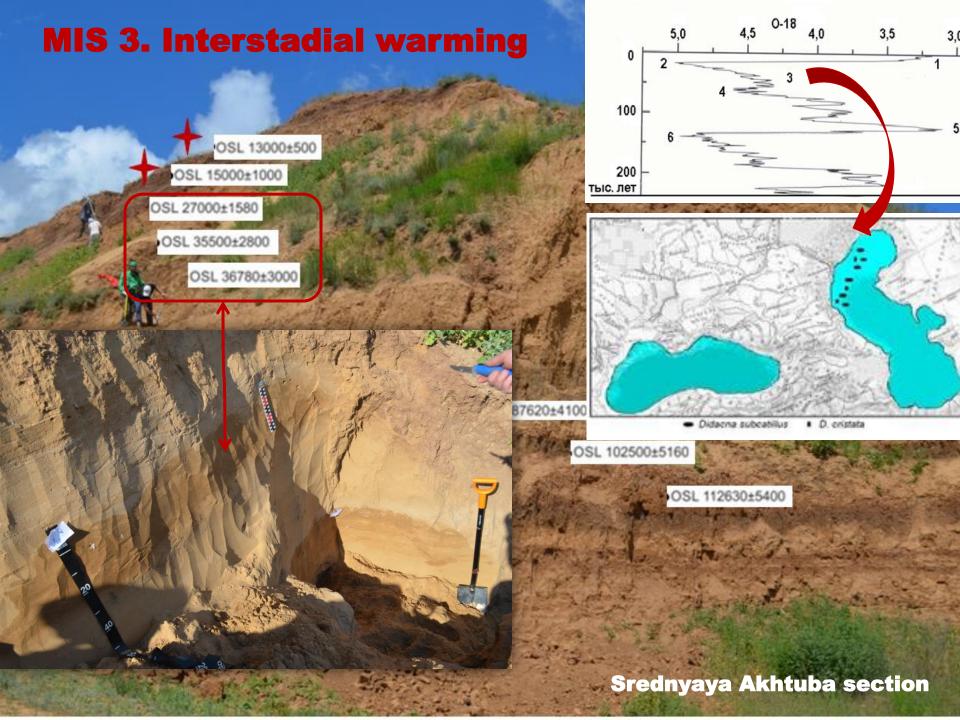
The pollen assemblages of definitely periglacial character recovered from the Atelian deposits from cores (Bolikhovskaya et al., 2017).

The Atelian regression is clearly expressed in the structure of the Pleistocene deposits of the northern basin. It is reflected by the cuttings in the seismic-acoustic profiles under the base of the Khvalynian deposits.

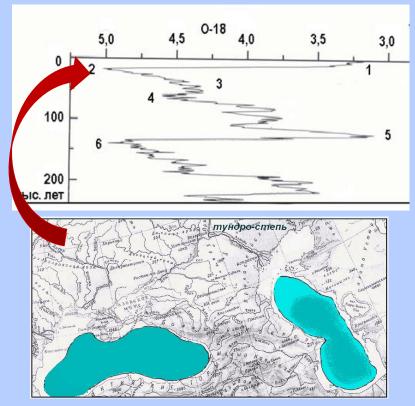

Radiocarbon dating determined using humic acids

ИГАН-4541	Q3 at	36680±850	40441-41941 (41191±750)
CAM 163762	Q3 at	37100±660 AMS	41062-42131 (41596±534)
ИГАН-4542	Q3 at	40830±100	44210-44570 (44390±180)

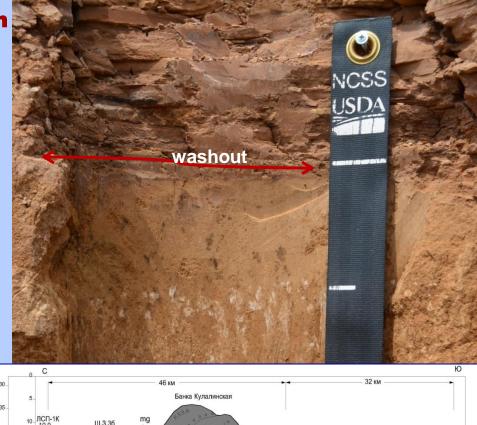

Radiocarbon dates obtained on the upper part of the Atelian deposits infilling the older erosional landforms strongly suggest them to have been deposited at the first half of the interstadial warming (MIS 3).

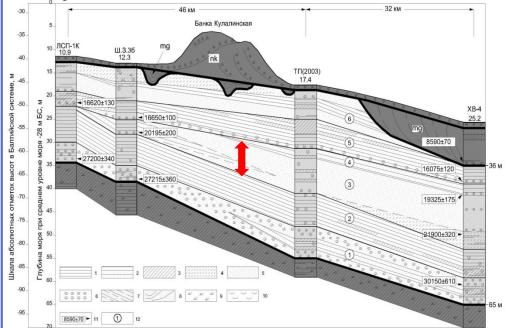

(Yanina et al., 2017)

MIS 4. Glacial stage MIS 3. Interstadial warming

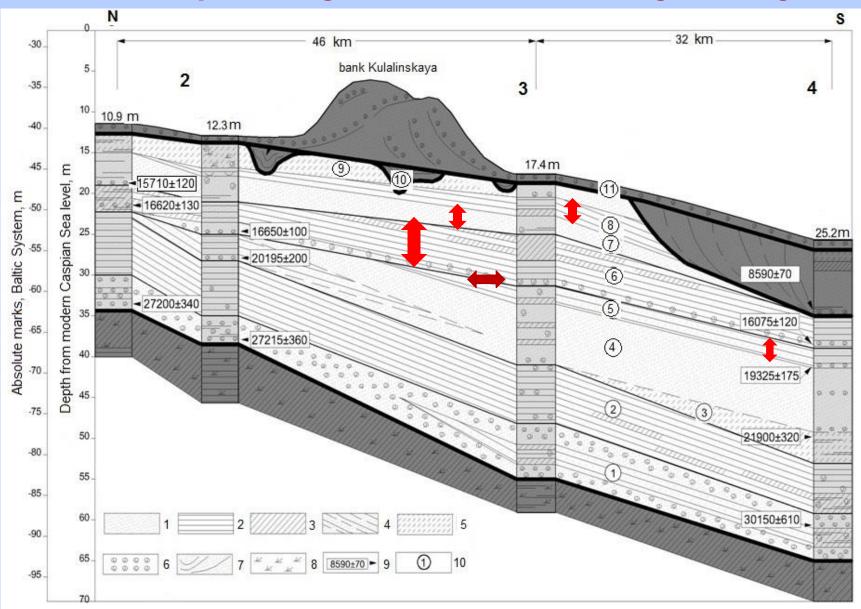


Khvalynian transgressive epoch


MIS 2. LGM. Inter-Khvalynian regression



The LGM in Eastern Europe was reflected in the development of a falling sea level in the Caspian Sea



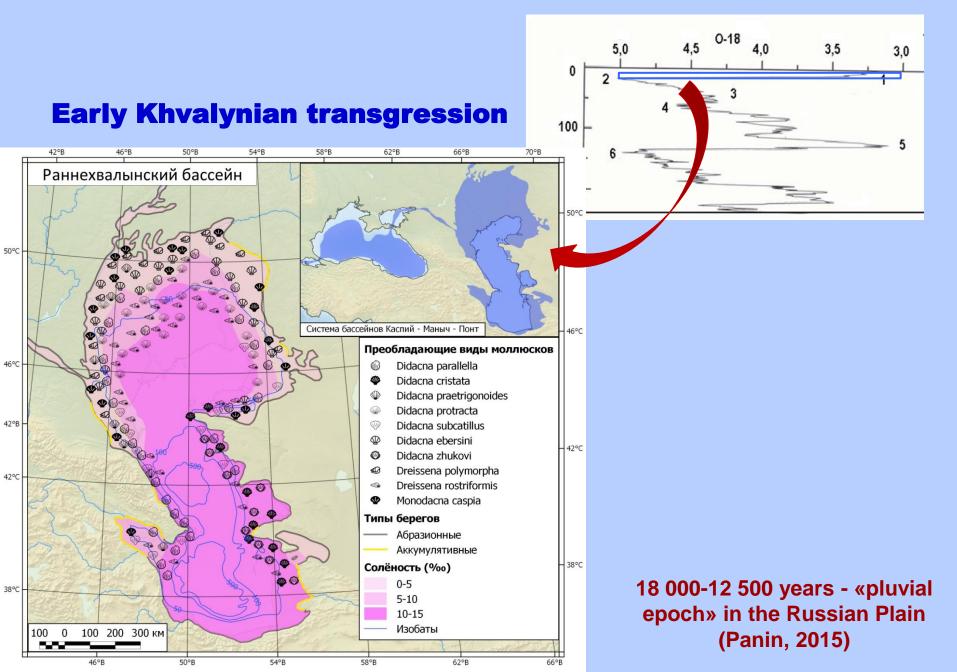
The results of climatic modeling (Kislov, Toropov)

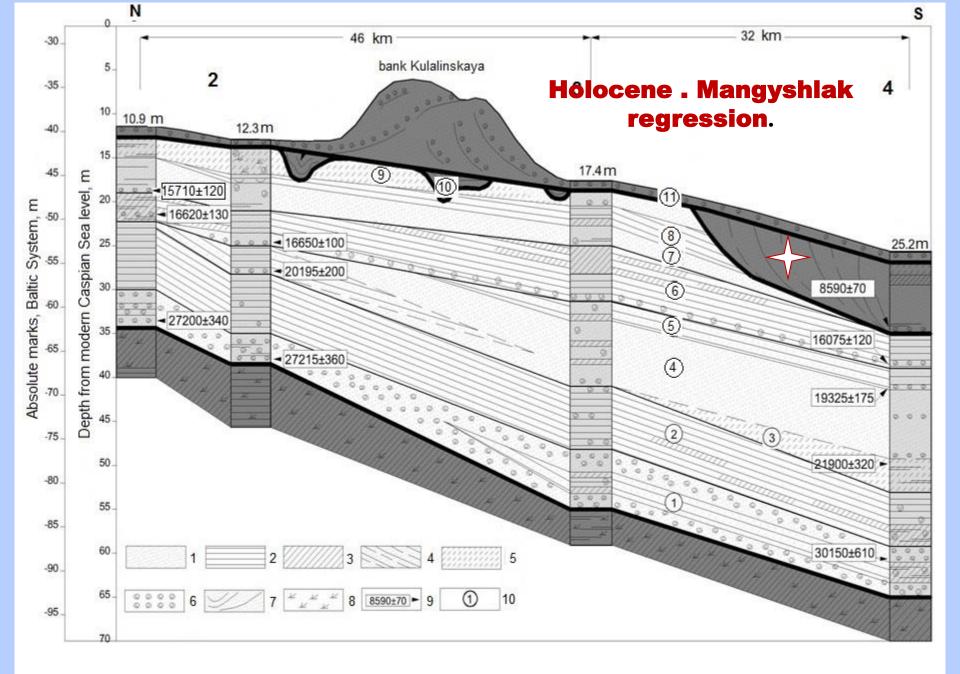
MIS 2. The epoch of degradation of the Late Valdai glacial stage



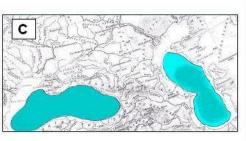
MIS 2. The epoch of degradation of the Late Valdai glacial stage.

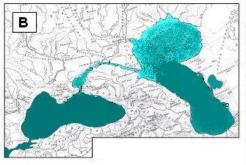
Lower Volga region

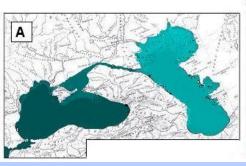

Khvalynian chocolate clays

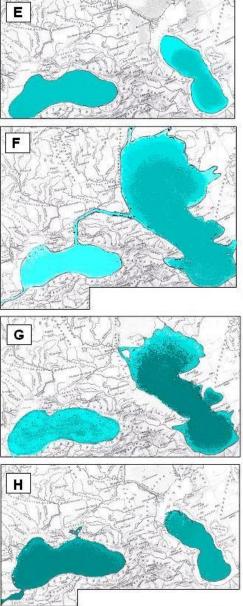

Manych

Местонахождение	Номер	Вид раковин	Возраст ¹⁴ С	Калиброванный		
	обр азца			возраст		
Зунда-Толга	ЛУ-5725	Didacna protracta	10670±140	12570±170		
Зунда-Толга	ЛУ-5726	D. ebersini	11420±220	13320±220		
Зунда-Толга	GrA-33717	D. ebersini	12740±50	14030 - 14670		
Чограй	ЛУ-5768	Hypanis plicatus	11470±180	13360±200		
Левый остров	ЛУ-5769	Didacna protracta	10930±370	12750±460		
Маныч-Балабино	МГУ-1491	D. ebersini,	14300±680			
		Monodacna caspia				
Маныч-Балабино	МГУ-1489	D. ebersini,	25690±300			
		Monodacna caspia,				
		Cerastoderma				
		glaucum				


MIS 2. The epoch of degradation of the Late Valdai glacial stage





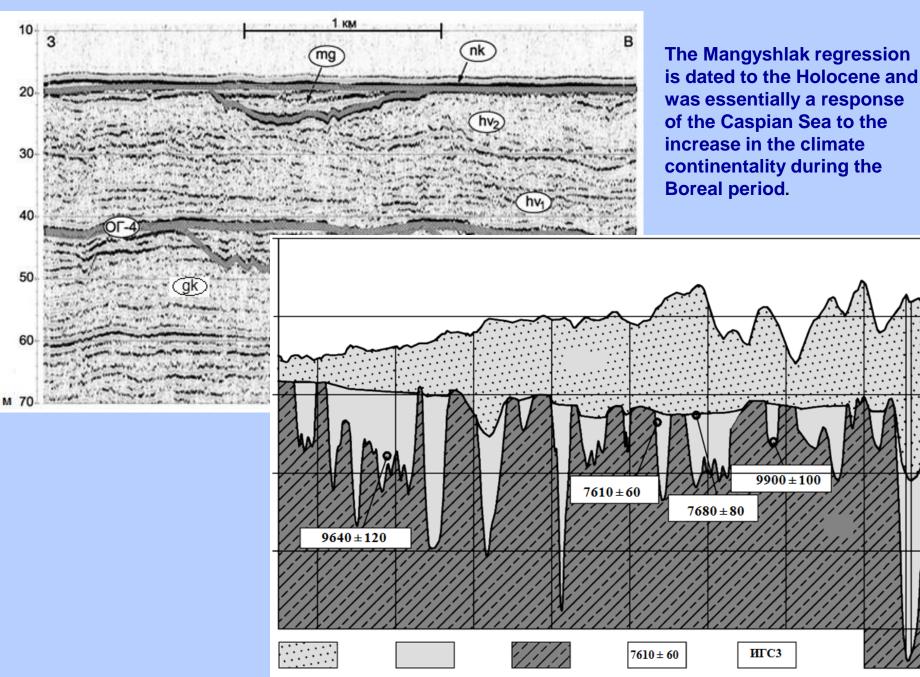

Global climate change and evolution of the Caspian basins

A – Eemian (Miculino) epoch (MIS 5): the Late Khazarian transgression in the Caspian (isolated basin) and the Karangatian transgression in the Pont (with ingression in the Manych valley).

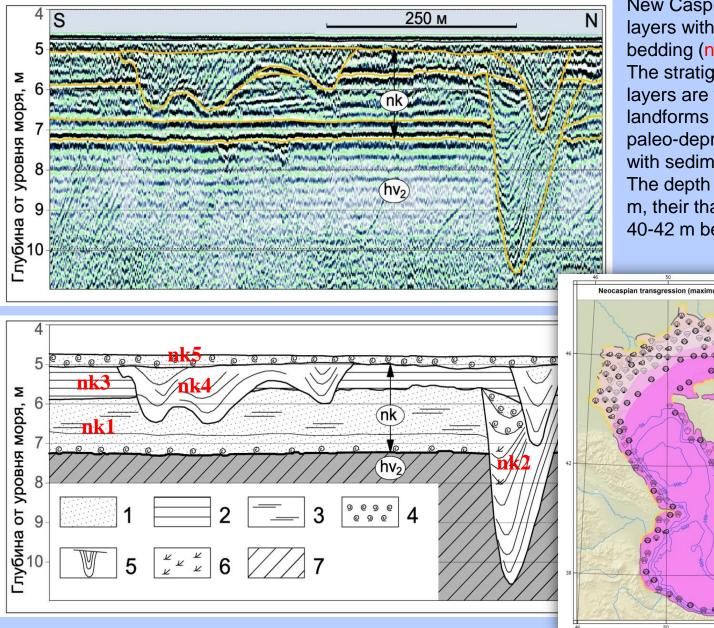
B – Transitional epoch from interglacial (MIS 5) to Early Valdai glacial (MIS 4) epochs: the Hyircanian transgression in the Caspian and beginning of the Karangatian regression; Hyircanian passage.

C – Early Valdai glacial stage maximum (MIS 4) and beginning of warming (MIS 3): Atelian regression in the Caspian Sea and Post-Karangatian regression in the Pont.

D – Interstadial warming (MIS 3) (second part), glacial degradation: first stage of the Early Khvalynian transgression in the Caspian and Surozh basin in the Pont.

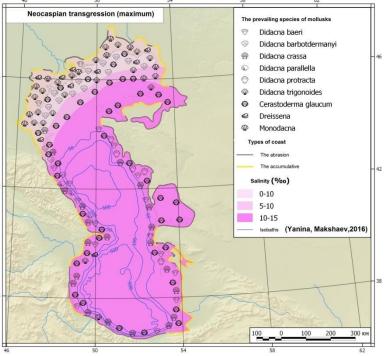

E – Late Valdai, LGM (MIS 2): Elton (?) regression in the Early Khvalynian basin and the Neoeuxinian regression in the Pont.

F – Glacial degradation (MIS 2): the Early Khvalynian transgression in the Caspian and the Neoeuxinian transgression in the Pont.


G – Glacial degradation (MIS 2) – beginning of postglacial epoch: the Late Khvalynian transgression in the Caspian Sea and the Neoeuxinian transgression in the Pont.

H – Holocene, beginning of the Interglacial (MIS 1): the Mangyshlak regression in the Caspian and beginning of the Black Sea transgression.

MIS 1. Holocene. Mangyshlak regression


New Caspian (Novocaspian) transgression

New Caspian series consists of three layers with horizontal or sub-horizontal bedding (nk1, nk3, nk5).

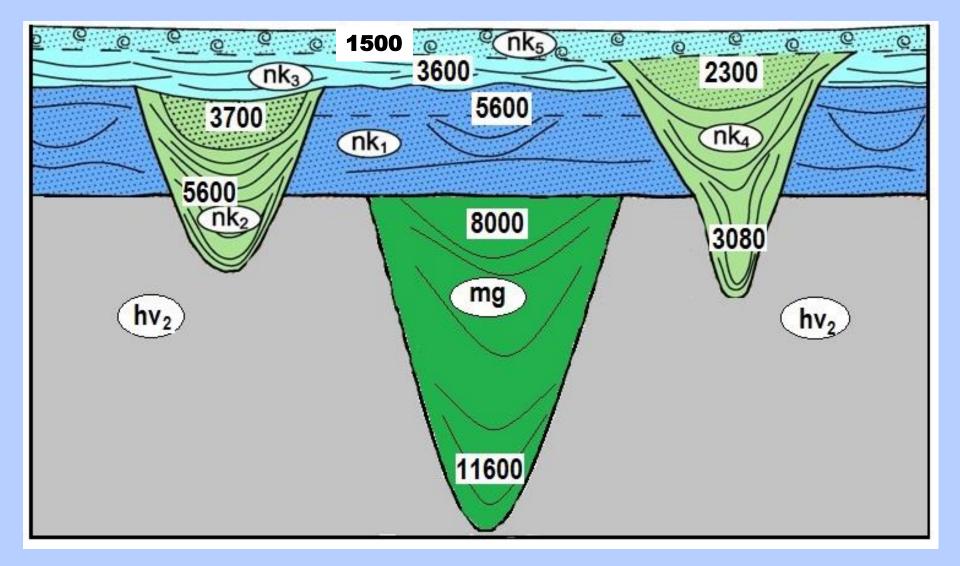
The stratigraphical gaps between the layers are well identifiable erosional landforms (gullies, ravines, etc.) and paleo-depressions (nk2 and nk4) filled with sediments.

The depth of the gullies is up to 10-14 m, their thalwegs being at a depth of 40-42 m below sea level.

Fauna and radiocarbon dating of the New Caspian deposits

		index			
MSU-1567	Shells	nk5	Cerastoderma glaucum, Didacna	Modern	
			barbotdemarnyi, D. parallella		
MSU-1572	Shells	nk5	Cerastoderma glaucum, Didacna barbotdemarnyi	860±40	357-499
LU-8160	Shells	nk5	Cerastoderma glaucum	1180±70	788-946
LU-6878	Shells	nk5	Cerastoderma glaucum	1240±70	885-1013
MSU-1511	Shells	nk5	Cerastoderma glaucum	1330±60	948-1099
AMS- 172873	Shells	nk5	Cerastoderma glaucum	1435±30	1304-1346
MSU-1560	Shells	nk5	Monodacna caspia,Didacna barbotdemarnyi, D. parallella	1690±40	1304-1416
MSU-1656	Shells	nk5	Monodacna caspia, D. parallella, Didacna barbotdemamvi	2050 ± 60	1544-1691
SPb-2007	Shells	nk4	Viviparus, viviparus	2254±50	2341-2301
IG-5096	OM	nk4	· · ·	2620±60	2709-2799
MSU-1638	Shells	nk4	Dreissena po lymorpha, Monodacna c aspia	2750 ±6 0	2286-2552
MSU-1662	OM	nk4	-	2830±70	2753-3214
IG-5098	OM	nk4		2860±60	2919-3064
MSU-1571	Shells	nk4	- Monodacna caspia, Dreissena polymorpha	2895±60	2919-3080
UBA-35034	Shells	nk3	Cerastoderma glaucum	2182±23	2159-2291
	Shens		Conditional Stempton		
MSU-1566	Shells	nk3	Monodacna caspia, Adacna leviuscula	3200±50	3370-3464
SPb-2005	Shells	nk3	Cerastoderma glaucum, Didacna barbotdemarnyi, D. longipes	3324±50	3611-3544
LU-6130	OM	nk2	-	3520±50	3720-3804
MSU-1635	Shells	nk2	Monodacna caspia, Dreissena polym orpha	4050±60	3867-4124
MSU-1644	Shells	nk2	Monodacna caspia, Dreissena polymorpha	4305±80	4199-4498
MSU-1661	OM	nk2	-	3980±200	4222-4652
MSU-1570	Shells	nk2	Monodacna caspia, Dreissena polymorpha	4130±70	4569-4714
MSU-1637	Shells	nk2	Monodacna caspia, Dreissena polymorpha	4500±100	4474-4787
MSU-1619	OM	nk2	-	4610±70	4595-4853
IG-5097	OM	nk2		4170±70	4615-4766
MSU-1512	Shells	nk2	Monodacna caspia, Dreissena polymorpha	4780±50	4830-5069
SPb-2012	Shells	nk2	Monodacna caspia, Dreissena polymorpha	4912±70	5718-5590
MSU-1617	OM	nk2		6350±100	6604-6902
MSU-1614	Shells	nkl	Dreissena po lymorpha, Monodacna c aspia,	5225±110	5382-5645
			Didacna barbotdem amyi, D. bae ri		
LU-6920	Shells	nkl	Dreissena po lymorpha, Monodacna c aspia, Didacna barbotdem amyi	5700±430	5841-6739
MSU-1563	Shells	nkl	Monodacna caspia, Didacna barbotdemarny i	5750±80	5972-6208
MSU-1643	Shells	nkl	Monodacna caspia, Didacna barbotdemarny i D. baeri	6410 ± 100	6663-6961
MSU-1509	Shells	nkl	Monodacna caspia, Didacna barbotdemarnyi	6610±60	6944-7165

nk5 last 1500 years.


nk4 from 3000 to 200 ¹⁴C yr BP.

nk3 from 3400 to 3200 ¹⁴C yr BP.

nk2 from 4900 to 3400 ¹⁴C yr BP.

nk1 from 7100 to 5300 yr BP.

Development of the Caspian Sea during the Holocene

Фауны, фаунистические комплексы и подкомплексы плейстоцена Каспия

	Фауны, фаунистические комплексы, подкомплексы												
Виды (подвиды)	b ur			hz_1			z 2		v	nk			
	b		ur ur ₁ ur ₂	hz1 ¹ hz1 ²		hz1 ⁸	hz ₂ 1	hz22	hv 1	hv 2	nknk		
Didaona parvula													
D. catillus catillus													
D. catillus volgensis													
D. catillus transcaspica													
D. catillus grim m i													
D. ex gr. catillus													
D. catillus dilatata													
D. catillus parvuloides		1											
D.rudis													
D. rudis catillus-rudis													
D.carditoides													
D.eulachia													
D. m ingetschaurica													
D. lindleyi													
D. subcatillus													
D. vulgaris		1											
D. golubyatnikovi													
D. kovalevskii													
D.pravoslavlevi													
D. subrudis													
D. bacuana		1											
D. prætrig. inderana		1										-	
D. subpyramidata		1											
D. pallasi											1		
D.nalivkini													
D. delenda													
D. colossea													
D.čelekenica					-								
D. shirvanica	-								<u> </u>				
D. smillanica	_								L			<u> </u>	
D. bergi O. la la seila vi	-								L				
D. kolesnikovi	_	<u> </u>							L			ļ	
D. porsugelica													
D. adacroides	_												
D. karelini													
D. paleotrigonoides													
D. trigonula													
D. gurganica													
D.charamica													
D. mischovdagica													
D. cristata													
D. hospes		1											
D. apsheronica													
D. schuraosenica													
D.ovalis													
D. ovatocraissa													
D. trigonoides chazarica													
D. umbonata		1											
D. suborassa		-											
D. artem iana		1											
D. subadem iana		+									:		
D.emendata		1											
D. pontocaspia		1											
D. pontocaspia tanaitica													
D. subovalis		1											
D. karabugasica		-											
D. bogatschevi		+										-	
D. suhpallasi		+									<u> </u>		
D. postcarditoides					-								
D. surachanica					-								
D.parallella		+											
D.protracta		-		-	-								
D.ebersini					-								
		+			-								
D.praetrigonoides					-	-							
D. zhukovi		-										-	
D.trigonoides		-											
D. crassa		1			-								
D. pyram idata		1											
D. baeri													
D. barbotde <i>m arr</i> ryi													
D. longipes													
D. profundicola													
Cerastoderma glaucum		1										_	
Mytilaster lineatus		1											
	-	1											
Abra ovata		1	i										

Only in the Holocene New Caspian basin is the broad movement of the marine species *Cerastoderma glaucum* noted. It is the characteristic feature of faunistic structure distinguishing this basin from all Neopleistocene basins of the Caspian Sea.

Domination of Cerastoderma glaucum in the New Caspian deposits

Область побережья			Запа	дная	5				
Виды моллюсков	Reading to a strategies	Апшеронский п-ов	Азербайцжан	Далестан	Северо-западная	Северная	Восточная	Юго-восточная	Иран
D. crassa									
D. baeri									
D. barbotdem arnyi									
D.1ongipes									
D. trigonoides									
D. pyramidata									
D. praetrigonoides									
D. parallella									
D. protracta									
D. profundicola									
Monodacna caspia									
Adacna vitrea									
A. laeviuscula									
Hypanis plicatus									
Cerastoderma glaucum									
Dreissena polymorpha									
Dr. rostriformis									
Dr. caspia									

Modern Caspian Sea

Now in bottom biocenoses of the Caspian Sea, *Abra ovata*, *Mytilaster lineatus*, and *Cerastoderma glaucum* often dominate. All of them have a Mediterranean origin. Obviously, as a result of evolutionary development from a small number of sibling species, the Caspian autochthonus fauna began to possess universal qualities but weak species specialization. It provided stability and relative resistance for communities to changing environmental factors, but it made them noncompetitive to installed marine species. Invasive species and acclimatized species made much more essential changes to the biodiversity than was caused by natural factors.

Natural ecosystems have undergone an anthropogenic transformation.

In historical time, not only has a rapid change in biodiversity been observed, but also an irreversible change in water ecosystems.

Now, the role of anthropogenic factors has become the most important in the distribution of molluscan species in the basin.

The modern development of the Caspian Sea malacofauna has led to the seeming increase in molluscan biodiversity due to the emergence of new taxa.

But, in fact, we currently observe a loss of biodiversity at the global level, which is turning unique ecosystems of the Caspian Sea into something similar to that of the Azov-Black Sea.

Thank you!